Although a typical autopilot system far surpasses humans in term of sensing accuracy, performance stability and response agility, such a system is still far behind humans in the wisdom of understanding an unfamiliar environment with creativity, adaptivity and resiliency. Current AD brains are basically expert systems featuring logical computations, which resemble the thinking flow of a left brain working at tactical level. A right brain is needed to upgrade the safety of automated driving vehicle onto next generation by making intuitive strategical judgements that can supervise the tactical action planning. In this work, we present the concept of an Automated Driving Strategical Brain (ADSB): a framework of a scene perception and scene safety evaluation system that works at a higher abstraction level, incorporating experience referencing, common-sense inferring and goal-and-value judging capabilities, to provide a contextual perspective for decision making within automated driving planning. The ADSB brain architecture is made up of the Experience Referencing Engine (ERE), the Common-sense Referencing Engine (CIE) and the Goal and Value Keeper (GVK). 1,614,748 cases from FARS/CRSS database of NHTSA in the period 1975 to 2018 are used for the training of ERE model. The kernel of CIE is a trained model, COMET-BART by ATOMIC, which can be used to provide directional advice when tactical-level environmental perception conclusions are ambiguous; it can also use future scenario models to remind tactical-level decision systems to plan ahead of a perceived hazard scene. GVK can take in any additional expert-hand-written rules that are of qualitative nature. Moreover, we believe that with good scalability, the ADSB approach provides a potential solution to the problem of long-tail corner cases encountered in the validation of a rule-based planning algorithm.


翻译:虽然典型的自动驾驶系统在感知精度、性能稳定性和反应敏捷度方面远远超过了人类,但这种系统仍然远远落后于人类,因为了解一个具有创造性、适应性和弹性的不熟悉环境的智慧。当前的AD大脑基本上是专家系统,其逻辑计算方法类似于在战术一级工作的左大脑的思维流。需要有一个右大脑,通过作出直观的战略判断,将自动驾驶车的安全提升到下一代,从而可以监督战术行动规划。在这项工作中,我们提出了自动驾驶战略大脑(ADSB)的概念:一个场景感知和现场质量评估系统的框架,这个框架在更抽象的层次上发挥作用,包括参考经验、常识、目标和价值判断能力,为在自动驾驶规划中的决策提供背景视角。 ADSB大脑结构由经验参考引擎(ERE)、共同感知知识引擎(CIEFRS/CARSDSB) 向前方系统提供一个更深层次的预知和价值保存器(GVK) 。 FARS/CARSDSB 预估测测测测测度(FSB) 在1975年的SDSDSDSDSDSDA数据库中, 使用一个长期的智能数据数据库中,在使用SDISDIALDADIADADADDIDIDIDDIDDDDDDDDD数据库中提供一个长期数据数据库中提供一种长期的预判法。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
27+阅读 · 2023年1月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员