Model Predictive Control (MPC) is a classic tool for optimal control of complex, real-world systems. Although it has been successfully applied to a wide range of challenging tasks in robotics, it is fundamentally limited by the prediction horizon, which, if too short, will result in myopic decisions. Recently, several papers have suggested using a learned value function as the terminal cost for MPC. If the value function is accurate, it effectively allows MPC to reason over an infinite horizon. Unfortunately, Reinforcement Learning (RL) solutions to value function approximation can be difficult to realize for robotics tasks. In this paper, we suggest a more efficient method for value function approximation that applies to goal-directed problems, like reaching and navigation. In these problems, MPC is often formulated to track a path or trajectory returned by a planner. However, this strategy is brittle in that unexpected perturbations to the robot will require replanning, which can be costly at runtime. Instead, we show how the intermediate data structures used by modern planners can be interpreted as an approximate value function. We show that that this value function can be used by MPC directly, resulting in more efficient and resilient behavior at runtime.


翻译:模型预测控制(MPC)是优化控制复杂、现实世界系统的一个经典工具。 尽管它已被成功地应用于机器人中一系列具有挑战性的任务,但它受到预测地平线的根本性限制,如果预测地平线太短,就会导致短视的决定。 最近,一些论文建议使用一个有学识的价值函数作为MPC的终端成本。 如果价值功能准确,它有效地允许MPC在无限的地平线上理解。 不幸的是,对于机器人的任务来说,对价值函数接近值的强化学习(RL)解决方案可能难以实现。 在本文中,我们建议一种适用于目标导向的问题(如到达和导航)的更高效的值函数近似方法。 在这些问题上, MPC 常常被设计成跟踪计划者返回的路径或轨迹。 但是, 这样的策略是模糊的, 因为对机器人的意外扰动需要重新规划, 而这在运行时成本会很高。 相反, 我们展示现代规划者所使用的中间数据结构如何被解释为一种近似值函数。 我们表明, MPC 能够直接使用这一价值函数, 从而产生更高效和更具弹性的行为。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员