Understanding the behavior of road users is of vital importance for the development of trajectory prediction systems. In this context, the latest advances have focused on recurrent structures, establishing the social interaction between the agents involved in the scene. More recently, simpler structures have also been introduced for predicting pedestrian trajectories, based on Transformer Networks, and using positional information. They allow the individual modelling of each agent's trajectory separately without any complex interaction terms. Our model exploits these simple structures by adding augmented data (position and heading), and adapting their use to the problem of vehicle trajectory prediction in urban scenarios in prediction horizons up to 5 seconds. In addition, a cross-performance analysis is performed between different types of scenarios, including highways, intersections and roundabouts, using recent datasets (inD, rounD, highD and INTERACTION). Our model achieves state-of-the-art results and proves to be flexible and adaptable to different types of urban contexts.


翻译:了解道路使用者的行为对于发展轨迹预测系统至关重要。在这方面,最新进展侧重于经常性结构,建立了现场所涉人员之间的社会互动关系;最近,还采用了更简单的结构,以根据变形网络预测行人轨迹,并使用定位信息。它们允许在没有任何复杂互动条件的情况下,单独模拟每个代理人的轨迹。我们的模型利用这些简单结构,增加了更多数据(定位和标题),并调整了这些结构的用途,使之适应预测地平线中城市情景中的车辆轨迹预测问题;此外,还利用最新的数据集(D、rounD、高D和interACTI),对不同类型的情景,包括高速公路、交叉点和环形路进行了交叉性业绩分析。我们的模型取得了最新的结果,并证明具有灵活性,适应了不同类型的城市环境。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
Top
微信扫码咨询专知VIP会员