Standard multiparameter eigenvalue problems (MEPs) are systems of $k\ge 2$ linear $k$-parameter square matrix pencils. Recently, a new form has emerged, a rectangular MEP (RMEP), with only one multivariate rectangular matrix pencil, where we are looking for combinations of the parameters where the rank of the pencil is not full. For linear and polynomial RMEPs we give the number of solutions and show how these problems can be solved numerically by a transformation into a standard MEP. Applications include finding the optimal least squares autoregressive moving average (ARMA) model and the optimal least squares realization of autonomous linear time-invariant (LTI) dynamical system. The new numerical approach seems computationally considerably more attractive than the block Macaulay method, the only other currently available numerical method for polynomial RMEPs.
翻译:标准多参数电子价值问题(MEPs)是2千元或2千元线性直线性平方块铅笔的系统。最近,出现了一种新的形式,即长方形的MEP(RMEP),只有一个多变量矩形矩阵铅笔,我们在这里寻找的是铅笔没有满级的参数组合。对于线性和多元RMEPs,我们给出了解决方案的数量,并展示了如何通过转换成标准的MEP从数字上解决这些问题。应用包括找到最佳的最小正方自动反向移动平均(ARMA)模型,以及自动线性时间变异(LTI)动态系统的最佳最小方形。新的数字方法似乎在计算上比Maucolay区法具有相当大的吸引力,而Maucolay区块法是目前唯一可用的多元RMEPs的其他数字方法。