In pre-market drug safety review, grouping related adverse event terms into standardised MedDRA queries or the FDA Office of New Drugs Custom Medical Queries (OCMQs) is critical for signal detection. We present a novel quantitative artificial intelligence system that understands and processes medical terminology and automatically retrieves relevant MedDRA Preferred Terms (PTs) for a given input query, ranking them by a relevance score using multi-criteria statistical methods. The system (SafeTerm) embeds medical query terms and MedDRA PTs in a multidimensional vector space, then applies cosine similarity and extreme-value clustering to generate a ranked list of PTs. Validation was conducted against the FDA OCMQ v3.0 (104 queries), restricted to valid MedDRA PTs. Precision, recall and F1 were computed across similarity-thresholds. High recall (>95%) is achieved at moderate thresholds. Higher thresholds improve precision (up to 86%). The optimal threshold (~0.70 - 0.75) yielded recall ~50% and precision ~33%. Narrow-term PT subsets performed similarly but required slightly higher similarity thresholds. The SafeTerm AI-driven system provides a viable supplementary method for automated MedDRA query generation. A similarity threshold of ~0.60 is recommended initially, with increased thresholds for refined term selection.
翻译:在上市前药物安全性评估中,将相关不良事件术语归类为标准化的MedDRA查询或美国食品药品监督管理局新药办公室定制医学查询(OCMQs)对信号检测至关重要。本文提出一种新型定量人工智能系统,该系统能理解并处理医学术语,通过多准则统计方法自动检索给定输入查询相关的MedDRA首选术语(PTs),并依据相关性评分进行排序。该系统(SafeTerm)将医学查询术语和MedDRA PTs嵌入多维向量空间,随后应用余弦相似度和极值聚类生成排序后的PT列表。验证工作基于FDA OCMQ v3.0(104项查询)进行,并限定于有效的MedDRA PTs。通过计算不同相似度阈值下的精确率、召回率和F1分数进行评估。在中等阈值下可实现高召回率(>95%)。提高阈值可提升精确率(最高达86%)。最优阈值(约0.70-0.75)对应的召回率约50%,精确率约33%。窄义PT子集表现相似但需要稍高的相似度阈值。SafeTerm人工智能驱动系统为自动化MedDRA查询生成提供了可行的补充方法。建议初始采用约0.60的相似度阈值,并在精细化术语选择时提高阈值。