The Critical Theorem, due to Henry Crapo and Gian-Carlo Rota, has been extended and generalised in many ways. In this paper, we describe properties of the characteristic polynomial of a weighted lattice showing that it has a recursive description. We use this to obtain results on critical exponents of $q$-polymatroids. We prove a Critical Theorem for representable $q$-polymatroids and we provide a lower bound on the critical exponent. We show that certain families of rank-metric codes attain this lower bound.
翻译:暂无翻译