Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial perturbations (UAPs), which are small and example-independent, yet powerful enough to degrade the performance of a CNN model, when added to a benign example. This paper proposes a novel total loss minimization (TLM) approach to generate UAPs for EEG-based BCIs. Experimental results demonstrated the effectiveness of TLM on three popular CNN classifiers for both target and non-target attacks. We also verified the transferability of UAPs in EEG-based BCI systems. To our knowledge, this is the first study on UAPs of CNN classifiers in EEG-based BCIs, and also the first study on optimization based UAPs for target attacks. UAPs are easy to construct, and can attack BCIs in real-time, exposing a potentially critical security concern of BCIs.
翻译:已经为基于脑电图的大脑-计算机界面提出了多重进化神经网络分类方法。然而,有线电视新闻网模型被发现容易受到普遍对抗干扰(UAPs)的伤害,这些模型规模小,且不依赖实例,但足以降低CNN模型的性能,如果添加到一个良性的例子中的话。本文提出了为基于EEEG的BCIs生成UAP(TLM)的新型全损最小化(TLM)方法。实验结果表明TLM对三个受欢迎的CNN分类器在目标和非目标性攻击方面的有效性。我们还核实了基于EEG BCI系统中UAPs的可转移性。据我们所知,这是对基于EG BCIs的CNN分类器的首次对UAPs进行UAPs的研究,也是关于目标攻击以UAPs为基础的优化的首次研究。UAPs易于构建,并且可以实时攻击BICs,暴露了BCIs的潜在关键安全关切。