Multiple convolutional neural network (CNN) classifiers have been proposed for electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models have been found vulnerable to universal adversarial perturbations (UAPs), which are small and example-independent, yet powerful enough to degrade the performance of a CNN model, when added to a benign example. This paper proposes a novel total loss minimization (TLM) approach to generate UAPs for EEG-based BCIs. Experimental results demonstrated the effectiveness of TLM on three popular CNN classifiers for both target and non-target attacks. We also verified the transferability of UAPs in EEG-based BCI systems. To our knowledge, this is the first study on UAPs of CNN classifiers in EEG-based BCIs, and also the first study on optimization based UAPs for target attacks. UAPs are easy to construct, and can attack BCIs in real-time, exposing a potentially critical security concern of BCIs.


翻译:已经为基于脑电图的大脑-计算机界面提出了多重进化神经网络分类方法。然而,有线电视新闻网模型被发现容易受到普遍对抗干扰(UAPs)的伤害,这些模型规模小,且不依赖实例,但足以降低CNN模型的性能,如果添加到一个良性的例子中的话。本文提出了为基于EEEG的BCIs生成UAP(TLM)的新型全损最小化(TLM)方法。实验结果表明TLM对三个受欢迎的CNN分类器在目标和非目标性攻击方面的有效性。我们还核实了基于EEG BCI系统中UAPs的可转移性。据我们所知,这是对基于EG BCIs的CNN分类器的首次对UAPs进行UAPs的研究,也是关于目标攻击以UAPs为基础的优化的首次研究。UAPs易于构建,并且可以实时攻击BICs,暴露了BCIs的潜在关键安全关切。

0
下载
关闭预览

相关内容

在深度学习中,卷积神经网络(CNN或ConvNet)是一类深度神经网络,最常用于分析视觉图像。基于它们的共享权重架构和平移不变性特征,它们也被称为位移不变或空间不变的人工神经网络(SIANN)。它们在图像和视频识别,推荐系统,图像分类,医学图像分析,自然语言处理,和财务时间序列中都有应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
实战 | 源码入门之Faster RCNN
计算机视觉life
19+阅读 · 2019年4月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
实战 | 源码入门之Faster RCNN
计算机视觉life
19+阅读 · 2019年4月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员