With the rise of machines to human-level performance in complex recognition tasks, a growing amount of work is directed towards comparing information processing in humans and machines. These studies are an exciting chance to learn about one system by studying the other. Here, we propose ideas on how to design, conduct and interpret experiments such that they adequately support the investigation of mechanisms when comparing human and machine perception. We demonstrate and apply these ideas through three case studies. The first case study shows how human bias can affect how we interpret results, and that several analytic tools can help to overcome this human reference point. In the second case study, we highlight the difference between necessary and sufficient mechanisms in visual reasoning tasks. Thereby, we show that contrary to previous suggestions, feedback mechanisms might not be necessary for the tasks in question. The third case study highlights the importance of aligning experimental conditions. We find that a previously-observed difference in object recognition does not hold when adapting the experiment to make conditions more equitable between humans and machines. In presenting a checklist for comparative studies of visual reasoning in humans and machines, we hope to highlight how to overcome potential pitfalls in design or inference.
翻译:在复杂的识别任务中,随着机器向人类层面表现的上升,越来越多的工作是用来比较人类和机器的信息处理。这些研究是一个通过研究另一个系统来了解一个系统的令人兴奋的机会。在这里,我们就如何设计、进行和解释实验提出想法,以便在比较人类和机器的认知时充分支持机制的调查。我们通过三个案例研究展示和应用这些想法。第一个案例研究表明人类偏见如何影响我们如何解释结果,以及若干分析工具可以帮助克服人类的这一参考点。在第二个案例研究中,我们强调视觉推理任务中必要和充分机制之间的区别。因此,我们表明,与以前的建议相反,有关任务可能不需要反馈机制。第三个案例研究强调调整实验条件的重要性。我们发现,在调整实验以使人类和机器之间的条件更加公平时,在目标识别上存在一种差异。在提出人类和机器视觉推理比较研究的核对清单时,我们希望强调如何克服设计或推断中的潜在错误。