We introduce algorithms that achieve state-of-the-art \emph{dynamic regret} bounds for non-stationary linear stochastic bandit setting. It captures natural applications such as dynamic pricing and ads allocation in a changing environment. We show how the difficulty posed by the non-stationarity can be overcome by a novel marriage between stochastic and adversarial bandits learning algorithms. Defining $d,B_T,$ and $T$ as the problem dimension, the \emph{variation budget}, and the total time horizon, respectively, our main contributions are the tuned Sliding Window UCB (\texttt{SW-UCB}) algorithm with optimal $\widetilde{O}(d^{2/3}(B_T+1)^{1/3}T^{2/3})$ dynamic regret, and the tuning free bandit-over-bandit (\texttt{BOB}) framework built on top of the \texttt{SW-UCB} algorithm with best $\widetilde{O}(d^{2/3}(B_T+1)^{1/4}T^{3/4})$ dynamic regret.


翻译:我们引入了能够达到非静止线性线性土匪设置状态的算法 。 它捕捉了动态定价和广告分配等自然应用, 在变化的环境中。 我们展示了如何通过随机和对抗性土匪学习算法之间的新型结合来克服非静态造成的困难。 定义了 $d, B_ T, $ 和$T 问题维度、 emph{ 变量预算} 和总时间跨度, 我们的主要贡献是调整的滑动窗口 UCB (\ ttt{ SW- UCB}) 算法, 其最佳值为 $\\ 全局{O} (d ⁇ 2/3} (B_+1) 1/3} T} 动态遗憾, 以及调制自由土匪-超频带框架 (\ ttt{BB} 框架, 建在\ texttt{SW- UCB} 顶端, 我们的主要贡献是调制的滑动窗口 UCB (\\) 3} (d\\\\\ 4} Strigrolex} (B} (B} (_ 4} (B} _ _ 4} _ +1) 4} 4} (d\ 1 4} 4} 4} 4} 4} 调调调调调调调制自由的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调制的调算法框架。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
7+阅读 · 2021年5月25日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
6+阅读 · 2018年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员