This paper proposes a novel nonlinear activation mechanism typically for convolutional neural network (CNN), named as reborn mechanism. In sharp contrast to ReLU which cuts off the negative phase value, the reborn mechanism enjoys the capacity to reborn and reconstruct dead neurons. Compared to other improved ReLU functions, reborn mechanism introduces a more proper way to utilize the negative phase information. Extensive experiments validate that this activation mechanism is able to enhance the model representation ability more significantly and make the better use of the input data information while maintaining the advantages of the original ReLU function. Moreover, reborn mechanism enables a non-symmetry that is hardly achieved by traditional CNNs and can act as a channel compensation method, offering competitive or even better performance but with fewer learned parameters than traditional methods. Reborn mechanism was tested on various benchmark datasets, all obtaining better performance than previous nonlinear activation functions.


翻译:本文提出了一个新型的非线性激活机制,通常被命名为再生机制,用于革命性神经网络(CNN),与削减负阶段值的RELU形成鲜明对比,再生机制拥有重生和重建死神经元的能力。与其他经改进的RELU功能相比,再生机制引入了利用负阶段信息的更适当方法。广泛的实验证实,这一激活机制能够更显著地增强模型代表能力,更好地利用输入数据信息,同时保持原ReLU功能的优势。此外,再生机制使得非对称得以实现,而传统CNN几乎无法实现,可以作为一种渠道补偿方法,提供竞争性或更好的性能,但与传统方法相比,学习的参数更少。再生机制在各种基准数据集上进行了测试,其性能都优于以前的非线性激活功能。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
【ECCV2020】OCRNet化解语义分割上下文信息缺失难题
专知会员服务
16+阅读 · 2020年8月24日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年9月30日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
6+阅读 · 2019年4月8日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员