This paper introduces a new modeling framework for the spectral analysis of long--range dependence (LRD) in functional sequences, beyond the usual structural modeling assumptions of the linear setting. Specifically, a semiparametric non--linear model is adopted in the functional spectral domain, involving a long--memory operator. We prove that this operator also characterizes the heavy--tail behavior, in time, of the inverse functional Fourier transform in the space of bounded linear operators. The non--summability in time of its trace norm then follows. Some particular cases are analyzed, including space varying fractionally integrated functional autoregressive moving averages processes. In the Gaussian case, a weak--consistent parametric estimator of the long--memory operator is obtained, by minimizing the operator norm of a divergence information based functional loss.
翻译:本文为功能序列的长程依赖性光谱分析引入了新的模型框架(LRD),超出了线性设置的通常结构模型假设。具体地说,在功能光谱域采用了半参数非线性模型,涉及一个长线性操作员。我们证明,该操作员还及时对受约束线性操作员空间的反功能傅里叶变形的重尾行为进行了特征描述。随后是跟踪规范的时空不可计算性。一些特定案例得到了分析,包括空间分布不一的功能递减性功能自动移动平均过程。在高斯案中,通过尽量减少基于功能损失的差异信息操作员规范,获得了长线性操作员的薄弱一致的准参数性测算符。