In this paper, we investigate projection-based intrusive and data-driven non-intrusive model order reduction methods in numerical simulation of rotating thermal shallow water equation (RTSWE) in parametric and non-parametric form. Discretization of the RTSWE in space with centered finite differences leads to Hamiltonian system of ordinary differential equations with linear and quadratic terms. The full-order model (FOM) is obtained by applying linearly implicit Kahan's method in time. Applying proper orthogonal decomposition with Galerkin projection (POD-G), we construct the intrusive reduced-order model (ROM). We apply operator inference (OpInf) with re-projection for non-intrusive reduced-order modeling. In the parametric case, we make use of the parameter dependency at the level of the PDE without interpolating between the reduced operators. The least-squares problem of the OpInf is regularized with the minimum norm solution. Both ROMs behave similar and are able to accurately predict the test and training data and capture system behavior in the prediction phase with several orders of computational speedup over the FOM. The preservation of system physics such as the conserved quantities of the RTSWE by both ROMs enables that the models fit better to data and stable solutions are obtained in long-term predictions, which are robust to parameter changes.


翻译:在本文中,我们调查了在对准和非对称形式的旋转热浅水方程(RTSWE)数字模拟中,以基于预测的侵扰和数据驱动的非侵扰性模式减少顺序的方法。在空间中,RTSWE的分解与中点差异导致以线性和二次条件的普通差异方程的汉密尔顿系统。全序模式(FOM)是通过在时间上应用线性隐含的Kahan方法获得的。与Galerkin 投影(POD-G)应用适当的正方位分解分解模式(RTSWE),我们建造了侵扰性减序模型(ROM)。我们用操作者推论(OpInf)重新预测非侵入性减序模型(OpInf)的分解方法(RTSWE)的分解方法。在预测阶段,我们使用PDE的参数依赖度是正常的,OpInf的最小方位问题与最低规范解决方案(POPOInf)相固定化。两种方法都表现相似,而且能够准确预测测试和培训数据和测测算系统在预测阶段的精度阶段的系统中采用更精确的RWEMS-S-S-S-SDM的精确的系统,从而能够测测测测测测测。

0
下载
关闭预览

相关内容

专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
50+阅读 · 2020年12月14日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员