With the advent of fast-paced information dissemination and retrieval, it has become inherently important to resort to automated means of predicting stock market prices. In this paper, we propose Taureau, a framework that leverages Twitter sentiment analysis for predicting stock market movement. The aim of our research is to determine whether Twitter, which is assumed to be representative of the general public, can give insight into the public perception of a particular company and has any correlation to that company's stock price movement. We intend to utilize this correlation to predict stock price movement. We first utilize Tweepy and getOldTweets to obtain historical tweets indicating public opinions for a set of top companies during periods of major events. We filter and label the tweets using standard programming libraries. We then vectorize and generate word embedding from the obtained tweets. Afterward, we leverage TextBlob, a state-of-the-art sentiment analytics engine, to assess and quantify the users' moods based on the tweets. Next, we correlate the temporal dimensions of the obtained sentiment scores with monthly stock price movement data. Finally, we design and evaluate a predictive model to forecast stock price movement from lagged sentiment scores. We evaluate our framework using actual stock price movement data to assess its ability to predict movement direction.
翻译:随着快速信息传播和检索的出现,自动预测股市价格变得极其重要。本文提出了Taureau,这是一个利用Twitter情感分析预测股市走势的框架。我们的研究目的是确定Twitter是否能够反映公众对某个公司的看法,并与该公司的股票价格走势存在相关性。我们打算利用这种相关性来预测股票价格的变化。首先,我们利用Tweepy和getOldTweets获取一组顶级公司在重大事件期间公众意见的历史推文。使用标准编程库过滤和标记推文。然后,我们将取得的推文进行向量化和词嵌入生成。之后,我们利用TextBlob,一个最先进的情感分析引擎,根据推文评估和量化用户情绪。接下来,我们将获得情感得分的时间维度与月度股票价格走势数据进行相关性分析。最后,我们设计和评估了一个预测模型,从滞后的情感得分中预测股票价格的变化方向。我们使用实际的股票价格走势数据评估我们的框架,以评估其预测股票价格变化方向的能力。