With the advent of fast-paced information dissemination and retrieval, it has become inherently important to resort to automated means of predicting stock market prices. In this paper, we propose Taureau, a framework that leverages Twitter sentiment analysis for predicting stock market movement. The aim of our research is to determine whether Twitter, which is assumed to be representative of the general public, can give insight into the public perception of a particular company and has any correlation to that company's stock price movement. We intend to utilize this correlation to predict stock price movement. We first utilize Tweepy and getOldTweets to obtain historical tweets indicating public opinions for a set of top companies during periods of major events. We filter and label the tweets using standard programming libraries. We then vectorize and generate word embedding from the obtained tweets. Afterward, we leverage TextBlob, a state-of-the-art sentiment analytics engine, to assess and quantify the users' moods based on the tweets. Next, we correlate the temporal dimensions of the obtained sentiment scores with monthly stock price movement data. Finally, we design and evaluate a predictive model to forecast stock price movement from lagged sentiment scores. We evaluate our framework using actual stock price movement data to assess its ability to predict movement direction.


翻译:随着快速信息传播和检索的出现,自动预测股市价格变得极其重要。本文提出了Taureau,这是一个利用Twitter情感分析预测股市走势的框架。我们的研究目的是确定Twitter是否能够反映公众对某个公司的看法,并与该公司的股票价格走势存在相关性。我们打算利用这种相关性来预测股票价格的变化。首先,我们利用Tweepy和getOldTweets获取一组顶级公司在重大事件期间公众意见的历史推文。使用标准编程库过滤和标记推文。然后,我们将取得的推文进行向量化和词嵌入生成。之后,我们利用TextBlob,一个最先进的情感分析引擎,根据推文评估和量化用户情绪。接下来,我们将获得情感得分的时间维度与月度股票价格走势数据进行相关性分析。最后,我们设计和评估了一个预测模型,从滞后的情感得分中预测股票价格的变化方向。我们使用实际的股票价格走势数据评估我们的框架,以评估其预测股票价格变化方向的能力。

0
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【开放书】数据科学经济金融应用,357页pdf
专知会员服务
71+阅读 · 2022年3月10日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
13+阅读 · 2018年1月11日
VIP会员
相关VIP内容
【开放书】数据科学经济金融应用,357页pdf
专知会员服务
71+阅读 · 2022年3月10日
专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员