Behavioral studies using personal digital devices typically produce rich longitudinal datasets of mixed data types. These data provide information about the behavior of users of these devices in real-time and in the users' natural environments. Analyzing the data requires multidisciplinary expertise and dedicated software. Currently, no generalizable, device-agnostic, freely available software exists within Python scientific computing ecosystem to preprocess and analyze such data. This paper introduces a Python package, Niimpy, for analyzing digital behavioral data. The Niimpy toolbox is a user-friendly open-source package that can quickly be expanded and adapted to specific research requirements. The toolbox facilitates the analysis phase by offering tools for preprocessing, extracting features, and exploring the data. It also aims to educate the user on behavioral data analysis and promotes open science practices. Over time, Niimpy will expand with extra data analysis features developed by the core group, new users, and developers. Niimpy can help the fast-growing number of researchers with diverse backgrounds who collect data from personal and consumer digital devices to systematically and efficiently analyze the data and extract useful information. This novel information is vital for answering research questions in various fields, from medicine to psychology, sociology, and others.
翻译:使用个人数字设备的行为研究通常会产生丰富的不同类型数据的纵向数据集。这些数据提供了实时和用户自然环境中这些设备用户的行为信息。分析数据需要多学科的专门知识和专用软件。目前,在Python科学计算生态系统中不存在可用于预处理和分析这些数据的通用、设备智能、免费的软件。本文介绍了一个用于分析数字行为数据的Python软件包,Niimpy。Niimpy工具箱是一个方便用户的开放源码包,可以迅速扩展和适应具体的研究要求。工具箱通过提供预处理工具、提取特征和探索数据,为分析阶段提供便利。它还旨在教育用户进行行为数据分析,促进开放的科学实践。随着时间的推移,Niimpy将扩大由核心组、新用户和开发者开发的额外数据分析特征。Niimy可以帮助来自不同背景、从个人和消费者数字设备收集数据到系统、高效分析数据和提取有用的信息的研究人员数量迅速增加。这个工具箱为分析阶段提供了便利,提供分析工具,为预处理、提取和探索数据提供了工具。它还旨在教育用户进行行为数据分析,并推广开放科学实践方面的重要信息。这个新信息,这是从各种研究领域、从社会医学到其他研究的至关重要的问题。