Benefiting from huge bandwidth resources, millimeter-wave (mmWave) communications provide one of the most promising technologies for next-generation wireless networks. To compensate for the high pathloss of mmWave signals, large-scale antenna arrays are required both at the base stations and user equipment to establish directional beamforming, where beam-management is adopted to acquire and track the optimal beam pair having the maximum received power. Naturally, narrow beams are required for achieving high beamforming gain, but they impose enormous training overhead and high sensitivity to blockages. As a remedy, deep learning (DL) may be harnessed for beam-management. First, the current state-of-the-art is reviewed, followed by the associated challenges and future research opportunities. We conclude by highlighting the associated DL design insights and novel beam-management mechanisms.


翻译:利用巨大的带宽资源,毫米波通信为下一代无线网络提供了最有希望的技术之一;为补偿毫米波信号的高度路况损失,基地台和用户设备都需要大型天线阵列,以建立定向波束成型,采用波束管理方法获取和跟踪拥有最大接收力的最佳光束对子。自然,实现高波束增益需要窄波束,但需要大量培训,对阻隔装置的敏感度很高。作为一种补救措施,可以利用深度学习(DL)来管理波束。首先,对当前的最新技术进行审查,然后研究相关的挑战和未来研究机会。我们最后强调相关的DL设计洞察力和新颖的波束管理机制。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
4+阅读 · 2021年1月14日
Arxiv
5+阅读 · 2020年8月28日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员