A probabilistic generative network model with $n$ nodes and $m$ overlapping layers is obtained as a superposition of $m$ mutually independent Bernoulli random graphs of varying size and strength. When $n$ and $m$ are large and of the same order of magnitude, the model admits a sparse limiting regime with a tunable power-law degree distribution and nonvanishing clustering coefficient. In this article we prove an asymptotic formula for the joint degree distribution of adjacent nodes. This yields a simple analytical formula for the model assortativity, and opens up ways to analyze rank correlation coefficients suitable for random graphs with heavy-tailed degree distributions. We also study the effects of power laws on the asymptotic joint degree distributions.


翻译:具有n美元节点和美元重叠层的概率型基因化网络模型是作为相互独立的不同大小和强度的Bernoulli随机图的叠加值获得的。当美元和美元是大和同样数量级时,该模型承认一种稀有的限制制度,具有可加金枪鱼的电法程度分布和非损耗的集群系数。在本条中,我们证明是相邻节点联合度分布的无保障公式。这为模型的分布提供了简单的分析公式,并开辟了分析适合重度分布的随机图的等级相关系数的方法。我们还研究了动力法对联合度分布的不稳性效果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月21日
Random Simple-Homotopy Theory
Arxiv
0+阅读 · 2021年7月21日
Arxiv
0+阅读 · 2021年7月20日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员