Early stopping techniques can be utilized to decrease the time cost, however currently the ultimate goal of early stopping techniques is closely related to the accuracy upgrade or the ability of the neural network to generalize better on unseen data without being large or complex in structure and not directly with its efficiency. Time efficiency is a critical factor in neural networks, especially when dealing with the segmentation of 3D point cloud data, not only because a neural network itself is computationally expensive, but also because point clouds are large and noisy data, making learning processes even more costly. In this paper, we propose a new early stopping technique based on fundamental mathematics aiming to upgrade the trade-off between the learning efficiency and accuracy of neural networks dealing with 3D point clouds. Our results show that by employing our early stopping technique in four distinct and highly utilized neural networks in segmenting 3D point clouds, the training time efficiency of the models is greatly improved, with efficiency gain values reaching up to 94\%, while the models achieving in just a few epochs approximately similar segmentation accuracy metric values like the ones that are obtained in the training of the neural networks in 200 epochs. Also, our proposal outperforms four conventional early stopping approaches in segmentation accuracy, implying a promising innovative early stopping technique in point cloud segmentation.


翻译:早期停止技术可以用来降低时间成本,然而,目前早期停止技术的最终目标与精密性升级或神经网络的能力密切相关,以便在结构上不庞大或复杂,不直接提高效率的情况下,更好地普及不可见数据;时间效率是神经网络中的一个关键因素,特别是在处理3D点云数据分离时,时间效率是神经网络中的一个关键因素,不仅因为神经网络本身计算成本昂贵,而且因为点云是大和繁忙的数据,使学习过程更加昂贵;在本文件中,我们提议采用一种以基本数学为基础的新的早期停止技术,目的是提高处理3D点云的神经网络的学习效率和准确性之间的取舍;我们的结果显示,通过在4个不同和高度利用的神经网络中采用早期停止技术来分割3D点云,模型的培训时间效率大大提高,效率增益值达到94 ⁇,而模型仅仅在几个类似分解精度度度指标值中达到近乎于200世纪神经网络培训中所获得的那些值,目的是提高与3D点云网络的学习效率和精确度之间的取舍。此外,我们的建议还表明,在早期停止采用有希望的常规的四段。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员