Consider $n$ random variables forming a Markov random field (MRF). The true model of the MRF is unknown, and it is assumed to belong to a binary set. The objective is to sequentially sample the random variables (one-at-a-time) such that the true MRF model can be detected with the fewest number of samples, while in parallel, the decision reliability is controlled. The core element of an optimal decision process is a rule for selecting and sampling the random variables over time. Such a process, at every time instant and adaptively to the collected data, selects the random variable that is expected to be most informative about the model, rendering an overall minimized number of samples required for reaching a reliable decision. The existing studies on detecting MRF structures generally sample the entire network at the same time and focus on designing optimal detection rules without regard to the data-acquisition process. This paper characterizes the sampling process for general MRFs, which, in conjunction with the sequential probability ratio test, is shown to be optimal in the asymptote of large $n$. The critical insight in designing the sampling process is devising an information measure that captures the decisions' inherent statistical dependence over time. Furthermore, when the MRFs can be modeled by acyclic probabilistic graphical models, the sampling rule is shown to take a computationally simple form. Performance analysis for the general case is provided, and the results are interpreted in several special cases: Gaussian MRFs, non-asymptotic regimes, connection to Chernoff's rule to controlled (active) sensing, and the problem of cluster detection.
翻译:考虑以美元随机变量构成Markov 随机字段(MRF) 。 管理成果框架的真正模型未知, 并假定它属于二进制组合。 目标是对随机变量进行顺序抽样( 一次性一次), 以便能够用最少的样本来检测真正的管理成果框架模型, 同时, 也控制决定可靠性。 最佳决策程序的核心要素是选择和取样随机变量的规则, 这一过程在时间上与随机变量同时进行。 这种过程在每次瞬间和适应所收集的数据时都选择随机变量, 选择预期对模型最知情的随机变量, 从而将达成可靠决定所需的样本数量全部减少到最低。 有关探测管理成果框架结构的现有研究一般同时抽样整个网络, 重点是设计最佳的检测规则, 而不考虑数据采集过程。 本文描述一般管理成果框架的取样过程, 连同顺序概率比测试, 在大 $ 美元 的 的 中显示最优化 。 在设计抽样模型的过程中, 关键的认识是设计一个非智能的连接点数 。 在常规的模型中, 能够测量常规的统计分析 。 。, 以 常规 的 的 的 直路路路 的 。