A reconfigurable intelligent surface (RIS) can be used to improve the channel gain between a base station (BS) and user equipment (UE), but only if its $N$ reflecting elements are configured properly. This requires accurate estimation of the cascaded channel from the UE to the BS through each RIS element. If the channel structure is not exploited, pilot sequences of length $N$ must be used, which is a major practical challenge since $N$ is typically at the order of hundreds. To address this problem without requiring user-specific channel statistics, we propose a novel estimator, called reduced-subspace least squares (RS-LS) estimator, that only uses knowledge of the array geometry. The RIS phase-shift pattern is optimized to minimize the mean-square error of the channel estimates. The RS-LS estimator largely outperforms the conventional least-squares estimator, and can be utilized with a much shorter pilot length since it exploits the fact that the array geometry confines the possible channel realizations to a reduced-rank subspace.


翻译:可重新配置的智能表面(RIS)可用于改善基地站和用户设备之间的通道收益,但前提是其反映元素的美元值配置得当。这要求通过每个RIS元素对从UE到BS的级联通道进行准确估计。如果频道结构没有开发,则必须使用长度为N$的试验序列,这是一个重大的实际挑战,因为通常情况下美元为数百美元左右。为了解决这个问题,而不要求用户提供特定频道的统计数据,我们提议了一个新的估计器,称为缩小的子空间最小方块(RS-LS)估计器,仅使用阵列几何测量法的知识。RIS阶段的轮班模式得到优化,以最大限度地减少频道估计的平均值差。RS-LS估计器基本上超越了传统的最小方位估量器,并且可以以更短的试验长度加以利用,因为它利用了阵列几何将可能的频道实现时间限制在缩小的子空间范围内这一事实。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月9日
Arxiv
0+阅读 · 2022年7月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员