A reconfigurable intelligent surface (RIS) can be used to improve the channel gain between a base station (BS) and user equipment (UE), but only if its $N$ reflecting elements are configured properly. This requires accurate estimation of the cascaded channel from the UE to the BS through each RIS element. If the channel structure is not exploited, pilot sequences of length $N$ must be used, which is a major practical challenge since $N$ is typically at the order of hundreds. To address this problem without requiring user-specific channel statistics, we propose a novel estimator, called reduced-subspace least squares (RS-LS) estimator, that only uses knowledge of the array geometry. The RIS phase-shift pattern is optimized to minimize the mean-square error of the channel estimates. The RS-LS estimator largely outperforms the conventional least-squares estimator, and can be utilized with a much shorter pilot length since it exploits the fact that the array geometry confines the possible channel realizations to a reduced-rank subspace.
翻译:可重新配置的智能表面(RIS)可用于改善基地站和用户设备之间的通道收益,但前提是其反映元素的美元值配置得当。这要求通过每个RIS元素对从UE到BS的级联通道进行准确估计。如果频道结构没有开发,则必须使用长度为N$的试验序列,这是一个重大的实际挑战,因为通常情况下美元为数百美元左右。为了解决这个问题,而不要求用户提供特定频道的统计数据,我们提议了一个新的估计器,称为缩小的子空间最小方块(RS-LS)估计器,仅使用阵列几何测量法的知识。RIS阶段的轮班模式得到优化,以最大限度地减少频道估计的平均值差。RS-LS估计器基本上超越了传统的最小方位估量器,并且可以以更短的试验长度加以利用,因为它利用了阵列几何将可能的频道实现时间限制在缩小的子空间范围内这一事实。