Rear-end crashes are one of the most common crash types. Passenger cars involved in rear-end crashes frequently produce severe outcomes. However, no study investigated the differences in the injury severity of occupant groups when cars are involved as following and leading vehicles in rear-end crashes. Therefore, the focus of this investigation is to compare the key factors affecting the injury severity between the front- and rear-car occupant groups in rear-end crashes. First, data is extracted from the Fatality Analysis Reporting System (FARS) for two types of rear-end crashes from 2017 to 2019, including passenger cars as rear-end and rear-ended vehicles. Significant injury severity difference between front- and rear-car occupant groups is found by conducting likelihood ratio test. Moreover, the front- and rear-car occupant groups are modelled by the correlated random parameter logit model with heterogeneity in means (CRPLHM) and the random parameter logit model with heterogeneity in means (RPLHM), respectively. From the modeling, the significant factors are occupant positions, driver age, overturn, vehicle type, etc. For instance, the driving and front-right positions significantly increase the probability of severe injury when struck by another vehicle. Large truck-strike-car tends to cause severe outcomes compared to car-strike-large truck. This study provides an insightful knowledge of mechanism of occupant injury severity in rear-end crashes, and propose some effective countermeasures to mitigate the crash severity, such as implementing stricter seat belt laws, improving the coverage of the streetlights, strengthening car driver's emergency response ability.


翻译:追尾碰撞是最常见的碰撞类型之一,乘用车在追尾碰撞中经常会造成严重后果。然而,还没有研究调查了车辆在追尾碰撞中作为前车和后车涉及时乘客组受伤严重程度的差异。因此,本研究的重点是比较影响前车和后车乘客组受伤严重程度的关键因素。首先,从2017年到2019年,从Fatality Analysis Reporting System (FARS)中提取两种类型的追尾碰撞数据,包括作为追尾车和被追尾车的乘用车。通过进行似然比检验,发现前车和后车乘客组之间存在显著的受伤严重度差异。此外,前车和后车乘客组分别采用具有均值异质性的相关随机参数逻辑模型(CRPLHM)和具有均值异质性的随机参数逻辑模型(RPLHM)进行建模。从这个模型中,发现一些显著因素,例如乘客位置、驾驶员年龄、翻车、车辆类型等等。例如,在被另一辆车撞击时,驾驶和前右位置会显著增加严重伤害的概率。大型卡车撞击汽车相比汽车撞击大型卡车容易造成严重后果。本研究提供了有关追尾碰撞中乘客伤害严重程度机理的深入了解,并提出了一些有效的对策来减轻碰撞的严重程度,例如实施更严格的安全带法规,改善路灯覆盖范围,加强车手的应急反应能力。

0
下载
关闭预览

相关内容

重磅!114页《人工智能全景报告》2022版发布,stateof.ai
专知会员服务
151+阅读 · 2022年10月11日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
49+阅读 · 2022年2月19日
专知会员服务
16+阅读 · 2021年9月25日
因果推断,Causal Inference:The Mixtape
专知会员服务
107+阅读 · 2021年8月27日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员