In this paper, we present a neat yet effective transformer-based framework for visual grounding, namely TransVG, to address the task of grounding a language query to the corresponding region onto an image. The state-of-the-art methods, including two-stage or one-stage ones, rely on a complex module with manually-designed mechanisms to perform the query reasoning and multi-modal fusion. However, the involvement of certain mechanisms in fusion module design, such as query decomposition and image scene graph, makes the models easily overfit to datasets with specific scenarios, and limits the plenitudinous interaction between the visual-linguistic context. To avoid this caveat, we propose to establish the multi-modal correspondence by leveraging transformers, and empirically show that the complex fusion modules (\eg, modular attention network, dynamic graph, and multi-modal tree) can be replaced by a simple stack of transformer encoder layers with higher performance. Moreover, we re-formulate the visual grounding as a direct coordinates regression problem and avoid making predictions out of a set of candidates (\emph{i.e.}, region proposals or anchor boxes). Extensive experiments are conducted on five widely used datasets, and a series of state-of-the-art records are set by our TransVG. We build the benchmark of transformer-based visual grounding framework and make the code available at \url{https://github.com/djiajunustc/TransVG}.


翻译:在本文中,我们提出了一个清晰而有效的基于变压器的视觉地面框架,即 TransVG, 以解决将语言查询定位到相应区域的图像上的任务。 最先进的方法, 包括两阶段或一阶段的方法, 依靠一个人工设计的复杂模块, 使用人工设计的机制来进行查询推理和多模式融合。 然而, 某些机制参与聚合模块的设计, 如查询分解和图像场景图, 使得这些模型很容易与带有特定情景的数据集相配, 并限制视觉语言环境之间的超常互动。 为避免这个洞穴, 我们提议通过利用变压器或一阶段的变压器来建立多模式通信, 并用经验显示, 复杂的聚变压模块( 包括模块关注网络、 动态图和多模式树) 可以用简单的变压器变压器变压器和更高性能的图像场景图。 此外, 我们重新调整视觉地面定位为直接协调回归问题, 并避免对一组候选人进行预测(\emlivi- 变压的变压器/ transal) 正在广泛进行一个地面的地面测试 。 。 正在使用一个数据库 。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年7月30日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
36+阅读 · 2020年1月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
视频目标识别资源集合
专知
25+阅读 · 2019年6月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年7月30日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【AAAI2021】知识增强的视觉-语言预训练技术 ERNIE-ViL
专知会员服务
26+阅读 · 2021年1月29日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
36+阅读 · 2020年1月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员