We develop error-control based time integration algorithms for compressible fluid dynamics (CFD) applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime. Focusing on discontinuous spectral element semidiscretizations, we design new controllers for existing methods and for some new embedded Runge-Kutta pairs. We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice. We compare a wide range of error-control-based methods, along with the common approach in which step size control is based on the Courant-Friedrichs-Lewy (CFL) number. The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances, while additionally providing control of the temporal error at tighter tolerances. The numerical examples include challenging industrial CFD applications.


翻译:我们为压缩流体动态(CFD)应用开发了基于错误控制的时间整合算法,并表明这些算法在精确度限制和稳定性限制制度下都是高效和稳健的。我们侧重于不连续的光谱元素半分解,为现有方法和一些新嵌入的龙格-库塔配对设计了新的控制器。我们展示了选择适当控制器参数的重要性,并提供了在实践中获得这些参数的手段。我们比较了多种基于错误控制的方法,以及根据Courant-Friedrichs-Lewy(CFL)数字进行步骤大小控制的共同方法。优化方法提高了性能,并自然采用了接近最大稳定的CPL数的步数,同时在较紧的容度上提供了对时间错误的控制。数字实例包括具有挑战性的工业CFD应用程序。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
14+阅读 · 2021年1月18日
专知会员服务
19+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
14+阅读 · 2021年1月18日
专知会员服务
19+阅读 · 2020年9月6日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员