The success of crowdsourcing based annotation of text corpora depends on ensuring that crowdworkers are sufficiently well-trained to perform the annotation task accurately. To that end, a frequent approach to train annotators is to provide instructions and a few example cases that demonstrate how the task should be performed (referred to as the CONTROL approach). These globally defined "task-level examples", however, (i) often only cover the common cases that are encountered during an annotation task; and (ii) require effort from crowdworkers during the annotation process to find the most relevant example for the currently annotated sample. To overcome these limitations, we propose to support workers in addition to task-level examples, also with "task-instance level" examples that are semantically similar to the currently annotated data sample (referred to as Dynamic Examples for Annotation, DEXA). Such dynamic examples can be retrieved from collections previously labeled by experts, which are usually available as gold standard dataset. We evaluate DEXA on a complex task of annotating participants, interventions, and outcomes (known as PIO) in sentences of medical studies. The dynamic examples are retrieved using BioSent2Vec, an unsupervised semantic sentence similarity method specific to the biomedical domain. Results show that (i) workers of the DEXA approach reach on average much higher agreements (Cohen's Kappa) to experts than workers of the the CONTROL approach (avg. of 0.68 to experts in DEXA vs. 0.40 in CONTROL); (ii) already three per majority voting aggregated annotations of the DEXA approach reach substantial agreements to experts of 0.78/0.75/0.69 for P/I/O (in CONTROL 0.73/0.58/0.46). Finally, (iii) we acquire explicit feedback from workers and show that in the majority of cases (avg. 72%) workers find the dynamic examples useful.


翻译:以众包为基础对文本 Corpora 进行批注的成功与否取决于能否确保众组工人训练有素,能够准确完成批注任务。为此,培训批注员的经常做法是提供指示和几个例子,说明任务应如何完成(称为 ConTROL 方法 ) 。这些全球定义的“任务级范例 ”, 但是, (一) 通常只涵盖在批注任务期间遇到的常见案例; 以及 (二) 在批注过程中,需要众组工人作出努力,找到当前附加说明的样本中最相关的例子。 为了克服这些限制,我们提议在任务级实例之外,还支持工人,同时提供“任务- Instance 水平” 的例子,说明任务应如何完成(称为 CONTROL 方法 ) 。 然而,这些动态实例只能从专家先前标注的收藏中提取,通常作为黄金标准数据集。 (二) 我们评估DEXA的复杂任务, 参与者、干预和结果(称为 PIO) 多数专家在生物数据级分析研究中, 也用类似的方法, 显示具体的数据分析结果。

0
下载
关闭预览

相关内容

DEXA会议是一个展示数据库、信息和知识系统最新研究活动的年度国际会议。DEXA提供了一个展示研究成果和审查该领域先进应用的论坛。会议及其相关的研讨会为开发人员、科学家和用户提供了广泛讨论数据库、信息和知识系统中的需求、问题和解决方案的机会。 官网地址:http://dblp.uni-trier.de/db/conf/dexa/
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
7+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员