Mean field models are a popular tool used to analyse load balancing policies. In some cases the waiting time distribution of the mean field limit has an explicit form. In other cases it can be computed as the solution of a set of differential equations. Here we study the limit of the mean waiting time $E[W_\lambda]$ as the arrival rate $\lambda$ approaches $1$ for a number of load balancing policies when job sizes are exponential with mean $1$ (i.e. the system gets close to instability). As $E[W_\lambda]$ diverges to infinity, we scale with $-\log(1-\lambda)$ and present a method to compute the limit $\lim_{\lambda\rightarrow 1^-}-E[W_\lambda]/\log(1-\lambda)$. This limit has a surprisingly simple form for the load balancing algorithms considered. We present a general result that holds for any policy for which the associated differential equation satisfies a list of assumptions. For the LL(d) policy which assigns an incoming job to a server with the least work left among d randomly selected servers these assumptions are trivially verified. For this policy we prove the limit is given by $\frac{1}{d-1}$. We further show that the LL(d,K) policy, which assigns batches of $K$ jobs to the $K$ least loaded servers among d randomly selected servers, satisfies the assumptions and the limit is equal to $\frac{K}{d-K}$. For a policy which applies LL($d_i$) with probability $p_i$, we show that the limit is given by $\frac{1}{\sum_ip_id_i-1}$. We further indicate that our main result can also be used for load balancers with redundancy or memory. In addition, we propose an alternate scaling $-\log(p_\lambda)$ instead of $-\log(1-\lambda)$, for which the limit $\lim_{\lambda\rightarrow 0^+}-E[W_\lambda]/\log(p_\lambda)$ is well defined and non-zero (contrary to $\lim_{\lambda\rightarrow 0^+}-E[W_\lambda]/\log(1-\lambda)$), while $\lim_{\lambda\rightarrow 1^-}\log(1-\lambda) / \log(p_\lambda)=1$.


翻译:平均字段模型是用来分析负载平衡政策的一种流行工具。 在一些情况中, 平均字段限制的等待时间分布有明确的格式。 在另一些情况中, 它可以被计算成一组差价方程的解决方案。 我们在这里研究平均等待时间的上限 $E[#lambda]$, 因为当工作规模以平均1美元指数指数指数指数来计算( 系统接近不稳定 ) 时, 许多负负平衡政策 。 由于 $E[\\\\ lambda] 的期待时间分配与不精确值不同, 我们用 $- 美元( 1\\\\ lamb) 来按比例计算。 我们用 $- 美元( little- labd) 来计算一个最小的 $( little- lax_ lax_ lax_ $美元) 。 这个上限是用来进一步平衡算出任何政策的总结果, 我们用 差价等值来计算一个假设清单。 对于给LLL(d) 的策略来说, lid (d) lad) lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lex lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax laxx lex lex lax laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx laxxxx lexxxxxxxxx lex lex lex lexx lex lex lex lex lex lex lex lex lex lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
1+阅读 · 2021年3月18日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员