In recent years, sentiment analysis and emotion classification are two of the most abundantly used techniques in the field of Natural Language Processing (NLP). Although sentiment analysis and emotion classification are used commonly in applications such as analyzing customer reviews, the popularity of candidates contesting in elections, and comments about various sporting events; however, in this study, we have examined their application for epidemic outbreak detection. Early outbreak detection is the key to deal with epidemics effectively, however, the traditional ways of outbreak detection are time-consuming which inhibits prompt response from the respective departments. Social media platforms such as Twitter, Facebook, Instagram, etc. allow the users to express their thoughts related to different aspects of life, and therefore, serve as a substantial source of information in such situations. The proposed study exploits the bilingual (Urdu and English) data from Twitter and NEWS websites related to the dengue epidemic in Pakistan, and sentiment analysis and emotion classification are performed to acquire deep insights from the data set for gaining a fair idea related to an epidemic outbreak. Machine learning and deep learning algorithms have been used to train and implement the models for the execution of both tasks. The comparative performance of each model has been evaluated using accuracy, precision, recall, and f1-measure.


翻译:近年来,情绪分析和情绪分类是自然语言处理(NLP)领域最常用的两种技术。尽管情绪分析和情绪分类在分析客户审查、竞选候选人在选举中的受欢迎程度和对各种体育赛事的评论等应用中通常使用,但在本研究中,我们研究了他们用于流行病爆发检测的应用程序,但早期爆发检测是有效处理流行病的关键,然而,传统的爆发检测方法耗费时间,妨碍了各部门的迅速反应。Twitter、Facebook、Instagram等社交媒体平台使用户能够表达他们与生活不同方面有关的想法,从而成为这类情况下的重要信息来源。拟议研究利用了来自Twitter和新信网站的与巴基斯坦登革热流行有关的双语(Urdu和英语)数据,并进行了情绪分析和情绪分类,以便从数据集中获取与流行病爆发有关的公平想法的深刻见解。已经使用机器学习和深层次学习算法等社会媒体平台来培训和执行这两项任务的模式。对每种模型的比较性业绩进行了评估,使用了精确度、精确度、回顾和回顾。

0
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【2020新书】社交媒体挖掘,212pdf,Mining Social Media
专知会员服务
60+阅读 · 2020年7月30日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员