Efficient processing of high-resolution video streams is safety-critical for many robotics applications such as autonomous driving. Image downsampling is a commonly adopted technique to ensure the latency constraint is met. However, this naive approach greatly restricts an object detector's capability to identify small objects. In this paper, we propose an attentional approach that elastically magnifies certain regions while maintaining a small input canvas. The magnified regions are those that are believed to have a high probability of containing an object, whose signal can come from a dataset-wide prior or frame-level prior computed from recent object predictions. The magnification is implemented by a KDE-based mapping to transform the bounding boxes into warping parameters, which are then fed into an image sampler with anti-cropping regularization. The detector is then fed with the warped image and we apply a differentiable backward mapping to get bounding box outputs in the original space. Our regional magnification allows algorithms to make better use of high-resolution input without incurring the cost of high-resolution processing. On the autonomous driving datasets Argoverse-HD and BDD100K, we show our proposed method boosts the detection AP over standard Faster R-CNN, with and without finetuning. Additionally, building on top of the previous state-of-the-art in streaming detection, our method sets a new record for streaming AP on Argoverse-HD (from 17.8 to 23.0 on a GTX 1080 Ti GPU), suggesting that it has achieved a superior accuracy-latency tradeoff.


翻译:高分辨率视频流的高效处理对于许多机器人应用(如自主驾驶)来说是安全的关键。 图像下标是一种常用的技术, 以确保延缩限制得到满足。 但是, 这种天真的方法极大地限制了物体探测器识别小天体的能力。 在本文中, 我们提出一种关注的方法, 将某些区域以静态放大, 同时保留一个小的输入面板。 放大的区域被认为是含有一个对象的概率很高的区域, 其信号可以来自一个数据设置的先前或框架级的信号, 并且可以来自从最近的天体预测中计算出来。 放大的方法是通过基于 KDE 的绘图, 将捆绑盒转换成扭曲参数, 然后将其输入成一个具有防腐蚀规范的图像取样器。 然后, 我们用扭曲的图像向某些区域提供一种不同的后向映映像, 在原始空间里, 我们的区域放大法可以更好地利用高分辨率输入, 而不必承担高分辨率处理的成本。 在自动驾驶数据设置的Argovers- HD- 和 BDD- 100K 上进行放大, 我们用快速的R- d- droad 检测方法, 在前的 RG- droad 上, 我们的升级的升级的升级的升级的升级的升级的R- groad- drod- grod- drod- drod- drod- s

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
CVPR 2019 论文开源项目合集
专知
18+阅读 · 2019年4月7日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年10月19日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
CVPR 2019 论文开源项目合集
专知
18+阅读 · 2019年4月7日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员