From social to biological systems, many real-world systems are characterized by higher-order, non-dyadic interactions. Such systems are conveniently described by hypergraphs, where hyperedges encode interactions among an arbitrary number of units. Here, we present an open-source python library, hypergraphx (HGX), providing a comprehensive collection of algorithms and functions for the analysis of higher-order networks. These include different ways to convert data across distinct higher-order representations, a large variety of measures of higher-order organization at the local and the mesoscale, statistical filters to sparsify higher-order data, a wide array of static and dynamic generative models, and an implementation of different dynamical processes with higher-order interactions. Our computational framework is general, and allows to analyse hypergraphs with weighted, directed, signed, temporal and multiplex group interactions. We provide visual insights on higher-order data through a variety of different visualization tools. We accompany our code with an extended higher-order data repository, and demonstrate the ability of HGX to analyse real-world systems through a systematic analysis of a social network with higher-order interactions. The library is conceived as an evolving, community-based effort, which will further extend its functionalities over the years. Our software is available at https://github.com/HGX-Team/hypergraphx
翻译:从社交到生物系统,许多现实世界的系统都具有高阶、非二元交互的特征。这些系统可以方便地通过超图来描述,其中超边编码了任意数量单位之间的交互。在这里,我们介绍一个开源的Python库,超图X(HGX),提供了一个全面的算法和函数集合,用于分析高阶网络。这些算法包括不同的数据转换方式,在不同的高阶表示之间转换,大量的局部和中尺度的高阶组织测量、统计过滤器去稀疏高阶数据、各种静态和动态生成模型,以及实现不同的带有高阶交互的动态过程。我们的计算框架是通用的,并允许分析具有加权、有向、有符号、时间和多层组交互的超图。我们通过各种不同的可视化工具提供了高阶数据的视觉洞察。我们通过一个具有高阶交互的社交网络的系统分析来演示了HGX分析真实世界系统的能力,并提供了一个扩展的高阶数据仓库来支持研究。该库被设计为一个不断发展的、基于社区贡献的努力,将在未来几年进一步扩展其功能。我们的软件可在以下网址获得:https://github.com/HGX-Team/hypergraphx