By harnessing pre-trained language models, summarization models had rapid progress recently. However, the models are mainly assessed by automatic evaluation metrics such as ROUGE. Although ROUGE is known for having a positive correlation with human evaluation scores, it has been criticized for its vulnerability and the gap between actual qualities. In this paper, we compare the generated summaries from recent LM, BART, and the reference summaries from a benchmark dataset, CNN/DM, using a crowd-sourced human evaluation metric. Interestingly, model-generated summaries receive higher scores relative to reference summaries. Stemming from our experimental results, we first argue the intrinsic characteristics of the CNN/DM dataset, the progress of pre-trained language models, and their ability to generalize on the training data. Finally, we share our insights into the model-generated summaries and presents our thought on learning methods for abstractive summarization.


翻译:通过利用经过培训的语言模型,总结模型最近取得了迅速的进展。然而,模型主要通过诸如ROUGE等自动评价指标进行评估。虽然ROUGE以与人类评价得分有积极关系而著称,但因其脆弱性和实际素质之间的差距而受到批评。在本文中,我们比较了最近LM、BART和基准数据集CNN/DM的参考摘要,即有线电视新闻网/DM使用众源人类评价指标。有趣的是,模型产生的摘要比参考摘要得分要高。我们从实验结果中总结了我们的实验结果,我们首先论证了CNN/DM数据集的内在特征、预先培训的语言模型的进展以及它们推广培训数据的能力。最后,我们分享了我们对模型生成摘要的见解,并介绍了我们对抽象和拼凑学习方法的想法。

0
下载
关闭预览

相关内容

【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
34+阅读 · 2020年8月23日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
5+阅读 · 2019年8月22日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关VIP内容
相关资讯
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员