A single-step high-order implicit time integration scheme with controllable numerical dissipation at high frequency is presented for the transient analysis of structural dynamic problems. The amount of numerical dissipation is controlled by a user-specified value of the spectral radius $\rho_\infty$ in the high frequency limit. Using this user-specified parameter as a weight factor, a Pad\'e expansion of the matrix exponential solution of the equation of motion is constructed by mixing the diagonal and sub-diagonal expansions. An efficient time stepping scheme is designed where systems of equations similar in complexity to the standard Newmark method are solved recursively. It is shown that the proposed high-order scheme achieves high-frequency dissipation while minimizing low-frequency dissipation and period errors. The effectiveness of dissipation control and efficiency of the scheme are demonstrated with numerical examples. A simple recommendation on the choice of the controlling parameter and time step size is provided. The source code written in MATLAB and FORTRAN is available for download at: https://github.com/ChongminSong/HighOrderTimeIntegration.
翻译:在对结构动态问题进行瞬时分析时,将提出一个单步高阶隐含时间整合计划,在高频限下,对结构动态问题进行可控数字消散。数字消散的数量由光谱半径的用户指定值 $\rho ⁇ ⁇ infty$控制。使用这个用户指定参数作为权重系数,通过混合二进制和亚对角扩展,对运动方程矩阵指数化溶液进行了扩展。设计了一个有效的时间跳动计划,在此过程中,对复杂程度与标准新标记方法相似的方程系统进行递解。显示,拟议的高阶方案实现了高频消散,同时尽量减少低频消散和周期错误。用数字示例演示了该方法的消散控制和效率。提供了关于控制参数和时间级大小选择的简单建议。MATLAB和FORTRAN的源代码可以下载:https://github.com/ChongminSong/HistrateTimberTimeralation。