Within just four years, the blockchain-based Decentralized Finance (DeFi) ecosystem has accumulated a peak total value locked (TVL) of more than 253 billion USD. This surge in DeFi's popularity has, unfortunately, been accompanied by many impactful incidents. According to our data, users, liquidity providers, speculators, and protocol operators suffered a total loss of at least 3.24 USD from Apr 30, 2018 to Apr 30, 2022. Given the blockchain's transparency and increasing incident frequency, two questions arise: How can we systematically measure, evaluate, and compare DeFi incidents? How can we learn from past attacks to strengthen DeFi security? In this paper, we introduce a common reference frame to systematically evaluate and compare DeFi incidents. We investigate 77 academic papers, 30 audit reports, and 181 real-world incidents. Our open data reveals several gaps between academia and the practitioners' community. For example, few academic papers address "price oracle attacks" and "permissonless interactions", while our data suggests that they are the two most frequent incident types (15% and 10.5% correspondingly). We also investigate potential defenses, and find that: (i) 103 (56%) of the attacks are not executed atomically, granting a rescue time frame for defenders; (ii) SoTA bytecode similarity analysis can at least detect 31 vulnerable/23 adversarial contracts; and (iii) 33 (15.3%) of the adversaries leak potentially identifiable information by interacting with centralized exchanges.


翻译:在短短四年内,基于链锁的分散金融(DeFi)生态系统积累了超过2530亿美元的封锁(TVL)峰值。DFi的声望激增不幸地伴随着许多具有影响的事件。根据我们的数据,用户、流动性提供者、投机者和协议操作者从Apr 30、2018年至Apr 30、2022年,总共损失了至少3.24美元。鉴于这一链链锁的透明度和事件频率的增加,出现了两个问题:我们如何系统地衡量、评估和比较DeFi事件?我们如何从过去的袭击中吸取教训以加强DeFi的安全?在本文件中,我们引入了一个共同的参考框架,系统评估和比较DeFi事件。我们调查了77份学术论文、30份审计报告和181个现实世界事件。我们的公开数据揭示了学术界和31个从业者群体之间的若干差距。例如,很少有学术文件涉及“价格或触角攻击”和“错误的相互作用”,而我们的数据表明它们是两种最常见的事件类型(15 %和10.5%),我们如何从过去的攻击中吸取教训?我们还调查了一种潜在的防御和最接近的直径直径直线性交易(103) 分析。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员