Multi-modality image fusion involves integrating complementary information from different modalities into a single image. Current methods primarily focus on enhancing image fusion with a single advanced task such as incorporating semantic or object-related information into the fusion process. This method creates challenges in achieving multiple objectives simultaneously. We introduce a target and semantic awareness joint-driven fusion network called TSJNet. TSJNet comprises fusion, detection, and segmentation subnetworks arranged in a series structure. It leverages object and semantically relevant information derived from dual high-level tasks to guide the fusion network. Additionally, We propose a local significant feature extraction module with a double parallel branch structure to fully capture the fine-grained features of cross-modal images and foster interaction among modalities, targets, and segmentation information. We conducted extensive experiments on four publicly available datasets (MSRS, M3FD, RoadScene, and LLVIP). The results demonstrate that TSJNet can generate visually pleasing fused results, achieving an average increase of 2.84% and 7.47% in object detection and segmentation mAP @0.5 and mIoU, respectively, compared to the state-of-the-art methods.
翻译:暂无翻译