Passive human tracking via Wi-Fi has been researched broadly in the past decade. Besides straight-forward anchor point localization, velocity is another vital sign adopted by the existing approaches to infer user trajectory. However, state-of-the-art Wi-Fi velocity estimation relies on Doppler-Frequency-Shift (DFS) which suffers from the inevitable signal noise incurring unbounded velocity errors, further degrading the tracking accuracy. In this paper, we present WiVelo\footnote{Code\&datasets are available at \textit{https://github.com/liecn/WiVelo\_SECON22}} that explores new spatial-temporal signal correlation features observed from different antennas to achieve accurate velocity estimation. First, we use subcarrier shift distribution (SSD) extracted from channel state information (CSI) to define two correlation features for direction and speed estimation, separately. Then, we design a mesh model calculated by the antennas' locations to enable a fine-grained velocity estimation with bounded direction error. Finally, with the continuously estimated velocity, we develop an end-to-end trajectory recovery algorithm to mitigate velocity outliers with the property of walking velocity continuity. We implement WiVelo on commodity Wi-Fi hardware and extensively evaluate its tracking accuracy in various environments. The experimental results show our median and 90\% tracking errors are 0.47~m and 1.06~m, which are half and a quarter of state-of-the-arts.
翻译:在过去十年中,通过Wi-Fi对被动的人类跟踪进行了广泛的研究。除了直向锚点定位外,速度是现有方法为推断用户轨迹而采用的另一个重要标志。然而,最新的Wi-Fi速度估计依赖于Doppler-Frequency-Shift(DFS),它受到不可避免的信号噪音的影响,引起无限制速度错误,进一步降低跟踪准确性。在本文中,我们提供了WiVelo\foote{Code ⁇ datasets,在\textit{https://github.com/liecn/WiVelo ⁇ SECON22}中,这是探索从不同的天线观测到新的空间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-时间-速度估计。首先,我们使用从频道状态信息(CSI)提取的子载载轮转移分布分配(SSD)来界定方向和速度估计两个相关特性。然后,我们设计由天线上各位置位置的状态计算出一个缩模模型,以便进行精确的精度-速度估速度估计, 和方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-方向-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度-速度