Higher braiding gates, a new kind of quantum gate, are introduced. These are matrix solutions of the polyadic braid equations (which differ from the generalized Yang-Baxter equations). Such gates support a special kind of multi-qubit entanglement which can speed up key distribution and accelerate the execution of algorithms. Ternary braiding gates acting on three qubit states are studied in detail. We also consider exotic non-invertible gates which can be related to qubit loss, and define partial identities (which can be orthogonal), partial unitarity, and partially bounded operators (which can be non-invertible). We define two classes of matrices, the star and circle types, and find that the magic matrices (connected with the Cartan decomposition) belong to the star class. The general algebraic structure of the classes introduced here is described in terms of semigroups, ternary and 5-ary groups and modules. The higher braid group and its representation by higher braid operators are given. Finally, we show that for each multi-qubit state there exist higher braiding gates which are not entangling, and the concrete conditions to be non-entangling are given for the binary and ternary gates discussed.
翻译:引入了顶层高门, 这是一种新型的量子门。 这些是多立面方程式的矩阵解决方案( 不同于通用的Yang- Baxter方程式 ) 。 这些门支持一种特殊的多方位纠结, 能够加速关键分布并加速算法的实施。 详细研究了在三个qubit 状态上运行的Ternary 边框门。 我们还考虑了与qubit 损失相关的异端非可垂直的门, 并定义了部分身份( 可以是垂直的) 、 部分单一性 和部分封闭的操作器( 可能是不可忽略的 ) 。 我们定义了两种类型的矩阵, 即恒星和圆类型, 并发现魔法矩阵( 与Cartan 分解状态相关) 属于恒星级 。 这里引入的班级的总体代数结构用半组、 恒定和 5 组和 模块来描述 。 我们给出了较高 braid 组及其代表部分身份( 可以是 ) ) 。 最后, 我们显示每个多方位状态都存在高端框门,, 而不是 硬门 硬门 。 。