Massive multiple-input multiple-output (MIMO) for 5G is evolving into the extremely large-scale antenna array (ELAA) to increase the spectrum efficiency by orders of magnitude for 6G communications. ELAA introduces spherical-wave-based near-field communications, where channel capacity can be significantly improved for single-user and multi-user scenarios. Unfortunately, for the widely studied uniform linear array (ULA), the near-field regions at large incidence angles will be reduced. Thus, many users randomly distributed in a cell may fail to benefit from near-field communications. In this paper, we leverage the rotational symmetry of uniform circular array (UCA) to provide uniform and enlarged near-field region for all users in a cell, enabling more users to benefit from near-field communications. Specifically, by exploiting the geometrical relationship between UCA and user with the spherical-wave model, the near-field beamforming technique for UCA is developed for the first time. Based on the analysis of near-field beamforming, we reveal that UCA is able to provide a larger near-field region than ULA in terms of the effective Rayleigh distance. Moreover, based on the UCA beamforming property, a concentric-ring codebook is designed to realize efficient beamforming in the near-field region of UCA. In addition, we find out that UCA could generate orthogonal near-field beams along the same direction, which has the potential for further improvement of multi-user capacity compared with ULA. Simulation results are provided to verify the feasibility of UCA to enable more users to benefit from near-field communications by broadening the near-field region.
翻译:5G 的大规模多输入多输出(MIMO) 正在演变成超大型天线阵列(ELAA), 以6G 通信的量级排序提高频谱效率。 ELA 引入基于球波的近地通信, 从而可以大大改善单一用户和多用户的频道能力。 不幸的是, 对于广泛研究的统一线性阵列(ULA) 来说, 广度事故角度的近地(MIMO) 将减少。 因此, 在一个细胞中随机分布的许多用户可能无法从近地通信中受益。 在本文中,我们利用统一循环阵列(UCA)的轮替性对称为6G通信量级的量级提高频谱效率。 我们发现,UCA 向近地(UCA) 提供统一和扩展的近地(UCA) 近地(UCA) 区域的统一和扩展地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地(CA) 地) 地(CA) 地(CA) 区域) 法(B) 地(I) 地(FL) ) 地(FA) 法系) 法(FA(F) ) 地(F(F) ) 法(FL) ) 法(比近地(C) ) 地(FL) 地(CA) ) 地(UL) 地(F) ) 更能(F) 更能) ) 更能) ) 更能) 更能) 更有利于(FL(O) 提供更接近地(U) 更接近地(U) 更接近地(UDA) 更接近地(CA) 更能) 更有利于(UDA) 更能) 更接近地(CA) ) 更接近地(CA) 更有利于(U) 更能能能能更接近地(CA) 更能能能