Despite recent progress on conversational systems, they still do not perform smoothly and coherently when faced with ambiguous requests. When questions are unclear, conversational systems should have the ability to ask clarifying questions, rather than assuming a particular interpretation or simply responding that they do not understand. Previous studies have shown that users are more satisfied when asked a clarifying question, rather than receiving an unrelated response. While the research community has paid substantial attention to the problem of predicting query ambiguity in traditional search contexts, researchers have paid relatively little attention to predicting when this ambiguity is sufficient to warrant clarification in the context of conversational systems. In this paper, we propose an unsupervised method for predicting the need for clarification. This method is based on the measured coherency of results from an initial answer retrieval step, under the assumption that a less ambiguous query is more likely to retrieve more coherent results when compared to an ambiguous query. We build a graph from retrieved items based on their context similarity, treating measures of graph connectivity as indicators of ambiguity. We evaluate our approach on two recently released open-domain conversational question answering datasets, ClariQ and AmbigNQ, comparing it with neural and non-neural baselines. Our unsupervised approach performs as well as supervised approaches while providing better generalization.


翻译:尽管在对话系统方面最近取得了进展,但在面对模棱两可的要求时,这些系统仍然不能顺利和连贯地运作。当问题不明确时,对话系统应该能够提出澄清问题,而不是假设某种解释或简单地回答他们不理解的问题。以前的研究表明,用户在被问到澄清问题时更满意,而不是得到不相干的答复。虽然研究界对传统搜索环境中预测查询模糊性的问题给予了极大关注,但研究人员相对较少地注意预测何时这种模糊性足以在对话系统范围内得到澄清。在本文中,我们提出了一种不监督地预测需要澄清问题的方法。这种方法基于初步答复检索步骤的结果的衡量一致性,假设比较模糊的查询更有可能在与模糊性查询相比的情况下取得更加一致的结果。我们根据背景相似性从检索到的项目中绘制一个图表,将图形连接度作为模糊性指标处理。我们最近公布的两个公开对话问题回答数据集、ClariQ和AmbigNQ的处理方法,我们采用的方法是用来预测需要澄清的。这个方法所依据的假设是初步答复检索步骤所衡量的结果是否一致,同时将它与监督性和非直观基线进行比较。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员