Deep Convolutional Sparse Coding (D-CSC) is a framework reminiscent of deep convolutional neural networks (DCNNs), but by omitting the learning of the dictionaries one can more transparently analyse the role of the activation function and its ability to recover activation paths through the layers. Papyan, Romano, and Elad conducted an analysis of such an architecture, demonstrated the relationship with DCNNs and proved conditions under which the D-CSC is guaranteed to recover specific activation paths. A technical innovation of their work highlights that one can view the efficacy of the ReLU nonlinear activation function of a DCNN through a new variant of the tensor's sparsity, referred to as stripe-sparsity. Using this they proved that representations with an activation density proportional to the ambient dimension of the data are recoverable. We extend their uniform guarantees to a modified model and prove that with high probability the true activation is typically possible to recover for a greater density of activations per layer. Our extension follows from incorporating the prior work on one step thresholding by Schnass and Vandergheynst.


翻译:Papyan、Romano和Elad对这种结构进行了分析,展示了与DCNN(D-CSC)的关系,并证明在何种条件下D-CSC能够保证恢复特定的激活路径。其工作的技术创新突出显示,人们可以通过被称为“条形分化”的新变体来查看RELU DCNNN的非线性激活功能的功效。利用这些变体,他们证明,与数据环境层面成正比的激活密度表示是可以恢复的。我们将其统一保证扩展至一个修改后的模型,并证明,在非常可能的情况下,真正的激活通常能够恢复到更密集的每个层。我们的扩展是通过Schnass和Vandergheyns在一步阈值上的先前工作。

0
下载
关闭预览

相关内容

这种方法被称为Sparse Coding。通俗的说,就是将一个信号表示为一组基的线性组合,而且要求只需要较少的几个基就可以将信号表示出来
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
20+阅读 · 2020年6月8日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员