All data on the Internet are transferred by network traffic, thus accurately modeling network traffic can help improve network services quality and protect data privacy. Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic, and generate distinguishable results for input traffic without considering specific downstream tasks. Effective pretrained models can significantly optimize the training efficiency and effectiveness of downstream tasks, such as application classification, attack detection and traffic generation. Despite the great success of pretraining in natural language processing, there is no work in the network field. Considering the diverse demands and characteristics of network traffic and network tasks, it is non-trivial to build a pretrained model for network traffic and we face various challenges, especially the heterogeneous headers and payloads in the multi-pattern network traffic and the different dependencies for contexts of diverse downstream network tasks. To tackle these challenges, in this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks. We propose the multi-pattern network traffic modeling to construct unified text inputs and support both traffic understanding and generation tasks. We further optimize the adaptation effect of the pretrained model to diversified tasks by shuffling header fields, segmenting packets in flows, and incorporating diverse task labels with prompts. With diverse traffic datasets from encrypted software, DNS, private industrial protocols and cryptocurrency mining, expensive experiments demonstrate the effectiveness of our NetGPT in a range of traffic understanding and generation tasks on traffic datasets, and outperform state-of-the-art baselines by a wide margin.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员