Partial differential equations (PDEs) are central to describing and modelling complex physical systems that arise in many disciplines across science and engineering. However, in many realistic applications PDE modelling provides an incomplete description of the physics of interest. PDE-based machine learning techniques are designed to address this limitation. In this approach, the PDE is used as an inductive bias enabling the coupled model to rely on fundamental physical laws while requiring less training data. The deployment of high-performance simulations coupling PDEs and machine learning to complex problems necessitates the composition of capabilities provided by machine learning and PDE-based frameworks. We present a simple yet effective coupling between the machine learning framework PyTorch and the PDE system Firedrake that provides researchers, engineers and domain specialists with a high productive way of specifying coupled models while only requiring trivial changes to existing code.
翻译:部分差异方程式(PDEs)是描述和模拟跨科学和工程的许多学科中出现的复杂物理系统的核心,但在许多现实的应用中,PDE建模对感兴趣的物理学作了不完整的描述;PDE机器学习技术旨在解决这一局限性;在这种方法中,PDE作为一种诱导偏差被作为一种诱导性偏差,使结合模型能够依赖基本物理法,同时要求较少培训数据;将高性能模拟组合PDEs和机器学习与复杂问题相结合,这就需要机器学习和PDE框架提供的各种能力组成。我们展示了机器学习框架PyTorrch与PDE系统Fierdrake之间的简单而有效的结合,后者为研究人员、工程师和域专家提供了高成效的方式来说明组合模型,而只是要求对现有代码进行微小的修改。</s>