This paper presents a matching network to establish point correspondence between images. We propose a Multi-Arm Network (MAN) to learn region overlap and depth, which can greatly improve the keypoint matching robustness while bringing little computational cost during the inference stage. Another design that makes this framework different from many existing learning based pipelines that require re-training when a different keypoint detector is adopted, our network can directly work with different keypoint detectors without such a time-consuming re-training process. Comprehensive experiments conducted on outdoor and indoor datasets demonstrated that our proposed MAN outperforms state-of-the-art methods. Code will be made publicly available.
翻译:本文提出了一个匹配网络,以建立图像之间的点对应关系。 我们建议建立一个多臂网络(MAN),以学习区域重叠和深度,这样可以大大改善关键点匹配的稳健性,同时在推断阶段带来很少的计算成本。 另一种设计使得这一框架不同于许多现有的基于学习的管道,这些管道在采用不同的关键点探测器时需要再培训,我们的网络可以直接与不同的关键点探测器合作,而不必经过这种耗时的再培训过程。 在室外和室内数据集中进行的全面实验表明,我们提议的人比最先进的方法要好。 守则将公布于众。