This paper presents a novel lightweight COVID-19 diagnosis framework using CT scans. Our system utilises a novel two-stage approach to generate robust and efficient diagnoses across heterogeneous patient level inputs. We use a powerful backbone network as a feature extractor to capture discriminative slice-level features. These features are aggregated by a lightweight network to obtain a patient level diagnosis. The aggregation network is carefully designed to have a small number of trainable parameters while also possessing sufficient capacity to generalise to diverse variations within different CT volumes and to adapt to noise introduced during the data acquisition. We achieve a significant performance increase over the baselines when benchmarked on the SPGC COVID-19 Radiomics Dataset, despite having only 2.5 million trainable parameters and requiring only 0.623 seconds on average to process a single patient's CT volume using an Nvidia-GeForce RTX 2080 GPU.


翻译:本文展示了一个使用CT扫描的新型轻量COVID-19诊断框架。我们的系统使用一种新型的两阶段方法,在不同病人一级投入中生成稳健有效的诊断。我们使用一个强大的主干网作为特征提取器,捕捉有区别的切片级特征。这些特征由轻量网络汇总,以获得患者一级诊断。综合网络经过仔细设计,可以拥有少量可训练参数,同时有足够的能力来概括不同CT数量中的差异,并适应在数据采集过程中引入的噪音。我们在SPGC COVID-19放射性数据集的基准基准上取得了显著的绩效增长,尽管只有250万个可训练参数,平均只需要623秒使用Nvidia-GeForce RTX 2080 GPU处理单一病人的CT量。

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
11+阅读 · 2019年7月4日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2018年4月17日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
Top
微信扫码咨询专知VIP会员