Software engineers need relevant and up-to-date architectural knowledge (AK), in order to make well-founded design decisions. However, finding such AK is quite challenging. One pragmatic approach is to search for AK on the web using traditional search engines (e.g. Google); this is common practice among software engineers. Still, we know very little about what AK is retrieved, from where, and how useful it is. In this paper, we conduct an empirical study with 53 software engineers, who used Google to make design decisions using the Attribute-Driven-Design method. Based on how the subjects assessed the nature and relevance of the retrieved results, we determined how effective web search engines are to find relevant architectural information. Moreover, we identified the different sources of AK on the web and their associated AK concepts.


翻译:软件工程师需要相关和最新的建筑知识(AK),以便做出有充分依据的设计决定。然而,找到这种AK是相当具有挑战性的。一个务实的方法是使用传统的搜索引擎(例如谷歌)在网上搜索AK;这是软件工程师的常见做法。然而,我们对于AK从何处检索到什么、从何处检索到什么以及它有多大用处知之甚少。在这份文件中,我们与53名软件工程师进行了实证研究,这些工程师利用Google使用属性驱动设计方法作出设计决定。根据主题如何评估检索结果的性质和相关性,我们决定了网络搜索引擎如何有效地找到相关的建筑信息。此外,我们还确定了网上AK的不同来源及其相关的AK概念。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
102+阅读 · 2020年3月4日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
相关论文
Top
微信扫码咨询专知VIP会员