The Advancing Data Justice Research and Practice project aims to broaden understanding of the social, historical, cultural, political, and economic forces that contribute to discrimination and inequity in contemporary ecologies of data collection, governance, and use. This is the consultation draft of a guide for developers and organisations, which are producing, procuring, or using data-intensive technologies.In the first section, we introduce the field of data justice, from its early discussions to more recent proposals to relocate understandings of what data justice means. This section includes a description of the six pillars of data justice around which this guidance revolves. Next, to support developers in designing, developing, and deploying responsible and equitable data-intensive and AI/ML systems, we outline the AI/ML project lifecycle through a sociotechnical lens. To support the operationalisation data justice throughout the entirety of the AI/ML lifecycle and within data innovation ecosystems, we then present five overarching principles of responsible, equitable, and trustworthy data research and innovation practices, the SAFE-D principles-Safety, Accountability, Fairness, Explainability, and Data Quality, Integrity, Protection, and Privacy. The final section presents guiding questions that will help developers both address data justice issues throughout the AI/ML lifecycle and engage in reflective innovation practices that ensure the design, development, and deployment of responsible and equitable data-intensive and AI/ML systems.
翻译:推进数据司法研究和实践项目旨在扩大对社会、历史、文化、政治和经济力量的理解,这些力量助长数据收集、治理和使用的现代生态中的歧视和不公平,这是为正在生产、采购或使用数据密集型技术的开发商和组织编写的指南协商草案。在第一节,我们介绍数据司法领域,从早期讨论到更近期提出的数据司法的理解,从数据司法的含义的理解,从早期讨论到更近一些的建议,本节介绍了本指南围绕的数据司法的六大支柱。其次是支持开发商设计、开发和部署负责任和公平的数据密集和AI/ML系统,我们从社会技术角度概述了AI/ML项目生命周期。为在整个AI/ML生命周期和数据创新生态系统内支持数据司法运作,我们随后提出了负责、公平和可信赖的数据研究和创新做法的五项总体原则,即安全、公平、问责、公平、可解释性、可解释性以及数据质量、廉正、保护和隐私系统。最后一节从社会技术角度概述AI/ML项目生命周期的周期周期周期周期,指导数据创新做法,确保数据开发商在整个数据周期和数据库中处理安全、廉正/隐私的发展问题。