We address modelling and computational issues for multiple treatment effect inference under many potential confounders. A primary issue relates to preventing harmful effects from omitting relevant covariates (under-selection), while not running into over-selection issues that introduce substantial variance and a bias related to the non-random over-inclusion of covariates. We propose a novel empirical Bayes framework for Bayesian model averaging that learns from data the extent to which the inclusion of key covariates should be encouraged, specifically those highly associated to the treatments. A key challenge is computational. We develop fast algorithms, including an Expectation-Propagation variational approximation and simple stochastic gradient optimization algorithms, to learn the hyper-parameters from data. Our framework uses widely-used ingredients and largely existing software, and it is implemented within the R package mombf featured on CRAN. This work is motivated by and is illustrated in two applications. The first is the association between salary variation and discriminatory factors. The second, that has been debated in previous works, is the association between abortion policies and crime. Our approach provides insights that differ from previous analyses especially in situations with weaker treatment effects.
翻译:暂无翻译