Geometric feature learning for 3D meshes is central to computer graphics and highly important for numerous vision applications. However, deep learning currently lags in hierarchical modeling of heterogeneous 3D meshes due to the lack of required operations and/or their efficient implementations. In this paper, we propose a series of modular operations for effective geometric deep learning over heterogeneous 3D meshes. These operations include mesh convolutions, (un)pooling and efficient mesh decimation. We provide open source implementation of these operations, collectively termed \textit{Picasso}. The mesh decimation module of Picasso is GPU-accelerated, which can process a batch of meshes on-the-fly for deep learning. Our (un)pooling operations compute features for newly-created neurons across network layers of varying resolution. Our mesh convolutions include facet2vertex, vertex2facet, and facet2facet convolutions that exploit vMF mixture and Barycentric interpolation to incorporate fuzzy modelling. Leveraging the modular operations of Picasso, we contribute a novel hierarchical neural network, PicassoNet-II, to learn highly discriminative features from 3D meshes. PicassoNet-II accepts primitive geometrics and fine textures of mesh facets as input features, while processing full scene meshes. Our network achieves highly competitive performance for shape analysis and scene parsing on a variety of benchmarks. We release Picasso and PicassoNet-II on Github https://github.com/EnyaHermite/Picasso.
翻译:3D meshes 的测深特征学习是计算机图形的核心,对于许多视觉应用来说非常重要。 但是,由于缺少所需的操作和/或其高效执行,目前深层学习在3D meshes 的等级模型上落后于各种3D meshes。 在本文中,我们提出了一系列模块操作,以便在不同 3D meshes 上有效进行测深学习。 这些操作包括 mesh convoluculs, (un) 集合和高效的网状缩小。 我们提供了这些操作的开放源实施, 统称为 textit{Picasso} 。 Picasso 的网状缩放模块模块模块模块模块模块模块是GPU- acceralation, 可以处理。 我们的网状图包括面图2verex2facefacet, 和面2fattfalfacetal convoluctions 。 在Picasusionalalal-dealalationalational-destria sessional sessional-destrials Pibal dia-destrials Pical Procial sal sals 和我们从高级智能网络系统解解解解解解解解解的图像网络, 我们的图像-deal-deal-deal-deal-deal-deal-deal-dementals 。