Many Big Data applications in business and science require the management and analysis of huge amounts of graph data. Previous approaches for graph analytics such as graph databases and parallel graph processing systems (e.g., Pregel) either lack sufficient scalability or flexibility and expressiveness. We are therefore developing a new end-to-end approach for graph data management and analysis based on the Hadoop ecosystem, called Gradoop (Graph analytics on Hadoop). Gradoop is designed around the so-called Extended Property Graph Data Model (EPGM) supporting semantically rich, schema-free graph data within many distinct graphs. A set of high-level operators is provided for analyzing both single graphs and collections of graphs. Based on these operators, we propose a domain-specific language to define analytical workflows. The Gradoop graph store is currently utilizing HBase for distributed storage of graph data in Hadoop clusters. An initial version of Gradoop has been used to analyze graph data for business intelligence and social network analysis.


翻译:在商业和科学中,许多大数据应用都需要对大量图表数据进行管理和分析。以往的图形分析方法,如图形数据库和平行图形处理系统(例如Pregel),要么缺乏足够的可缩放性或灵活性和直观性。因此,我们正在根据Hadoop生态系统(称为Gradoop(Hadoop上的大地分析仪)),为图表数据管理和分析开发一种新的端对端办法。Gradoop是围绕着所谓的扩展属性图数据模型(EPGM)设计的,该模型支持许多不同图表中的精密、无图解的数据。提供了一套高级操作员,用于分析单张图表和图集。根据这些操作员,我们建议了一种特定域语言来界定分析工作流程。Graddoop图库目前利用Hadoop图库在Hadoop集群中分布式存储的图形数据。Gradoop的初始版本用于分析用于商业情报和社会网络分析的图形数据。

1
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【2020新书】Kafka实战:Kafka in Action,209页pdf
专知会员服务
67+阅读 · 2020年3月9日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关论文
Arxiv
92+阅读 · 2020年2月28日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
6+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员