We describe a new approach to estimating relative risks in time-to-event prediction problems with censored data in a fully parametric manner. Our approach does not require making strong assumptions of constant proportional hazard of the underlying survival distribution, as required by the Cox-proportional hazard model. By jointly learning deep nonlinear representations of the input covariates, we demonstrate the benefits of our approach when used to estimate survival risks through extensive experimentation on multiple real world datasets with different levels of censoring. We further demonstrate advantages of our model in the competing risks scenario. To the best of our knowledge, this is the first work involving fully parametric estimation of survival times with competing risks in the presence of censoring.
翻译:我们描述一种新方法,用完全的参数来估计时间到活动预测问题与受审查数据之间的相对风险。我们的方法并不要求按照Cox-比例危险模型的要求,对基本生存分布的经常成比例危险作出强烈的假设。通过共同学习投入共变的深度非线性表述,我们展示了我们的方法的好处,即通过对具有不同审查水平的多个真实世界数据集进行广泛试验来估计生存风险。我们进一步展示了我们模型在相互竞争的风险情景中的优势。据我们所知,这是在审查面前对生存时间和相互竞争的风险进行完全的参数估计的首项工作。