In this paper, we formulate a Collaborative Pure Exploration in Kernel Bandit problem (CoPE-KB), which provides a novel model for multi-agent multi-task decision making under limited communication and general reward functions, and is applicable to many online learning tasks, e.g., recommendation systems and network scheduling. We consider two settings of CoPE-KB, i.e., Fixed-Confidence (FC) and Fixed-Budget (FB), and design two optimal algorithms CoopKernelFC (for FC) and CoopKernelFB (for FB). Our algorithms are equipped with innovative and efficient kernelized estimators to simultaneously achieve computation and communication efficiency. Matching upper and lower bounds under both the statistical and communication metrics are established to demonstrate the optimality of our algorithms. The theoretical bounds successfully quantify the influences of task similarities on learning acceleration and only depend on the effective dimension of the kernelized feature space. Our analytical techniques, including data dimension decomposition, linear structured instance transformation and (communication) round-speedup induction, are novel and applicable to other bandit problems. Empirical evaluations are provided to validate our theoretical results and demonstrate the performance superiority of our algorithms.


翻译:在本文中,我们制定了《内核强盗问题协作探索》(COPE-KB),为在有限的通信和一般奖励功能下多试剂多任务决策提供了一个新型的新模式,并适用于许多在线学习任务,例如建议系统和网络时间安排。我们考虑了COPE-KB的两个设置,即固定联系(FC)和固定预算(FB),并设计了两种最佳算法CoopKernelFC(FC)和CoopKernelFB(FB)。我们的算法配有创新和有效的内核测算器,可以同时实现计算和通信效率。根据统计和通信指标对上下限进行匹配,以显示我们算法的最佳性。理论界限成功地量化任务相似对学习加速的影响,只取决于内核特征空间的有效层面。我们的分析技术,包括数据层面的分解、线性结构化实例转换和(通信)循环式感应变,是我们用于其他业绩等级问题的理论性检验结果。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员