Incremental object detection aims to simultaneously maintain old-class accuracy and detect emerging new-class objects in incremental data. Most existing distillation-based methods underperform when unlabeled old-class objects are absent in the incremental dataset. While the absence can be mitigated by generating old-class samples, it also incurs high computational costs. In this paper, we argue that the extra computational cost stems from the inconsistency between the detector and the generative model, along with redundant generation. To overcome this problem, we propose Efficient Generated Object Replay (EGOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We also propose augmented replay to reuse the objects in generated samples, thereby reducing the redundant generation. In addition, we propose high-response knowledge distillation focusing on the knowledge related to the old class, which transfers the knowledge in generated objects to the incremental detector. With the addition of the generated objects and losses, we observe a bias towards old classes in the detector. We balance the losses for old and new classes to alleviate the bias, thereby increasing the overall detection accuracy. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in the absence of old-class objects.
翻译:暂无翻译