Random linear codes are a workhorse in coding theory, and are used to show the existence of codes with the best known or even near-optimal trade-offs in many noise models. However, they have little structure besides linearity, and are not amenable to tractable error-correction algorithms. In this work, we prove a general derandomization result applicable to random linear codes. Namely, in settings where the coding-theoretic property of interest is "local" (in the sense of forbidding certain bad configurations involving few vectors -- code distance and list-decodability being notable examples), one can replace random linear codes (RLCs) with a significantly derandomized variant with essentially no loss in parameters. Specifically, instead of randomly sampling coordinates of the (long) Hadamard code (which is an equivalent way to describe RLCs), one can randomly sample coordinates of any code with low bias. Over large alphabets, the low bias requirement can be weakened to just large distance. Furthermore, large distance suffices even with a small alphabet in order to match the current best known bounds for RLC list-decodability. In particular, by virtue of our result, all current (and future) achievability bounds for list-decodability of random linear codes extend automatically to random puncturings of any low-bias (or large alphabet) "mother" code. We also show that our punctured codes emulate the behavior of RLCs on stochastic channels, thus giving a derandomization of RLCs in the context of achieving Shannon capacity as well. Thus, we have a randomness-efficient way to sample codes achieving capacity in both worst-case and stochastic settings that can further inherit algebraic or other algorithmically useful structural properties of the mother code.
翻译:随机线性代码是编译理论中的一匹工作马, 用于显示代码的存在, 许多噪音模型中代码是最已知的甚或接近最佳的折叠。 但是, 它们除了线性外结构很少, 并且不易使用可移植错误校正算算法 。 在这项工作中, 我们证明对随机线性代码适用的一般性解析结果 。 也就是说, 在编码- 理论属性为“ 本地” 的环境下, 编码- 理论属性为“ 本地 ” ( 意指禁止某些包含少数矢量的错误配置 -- 代码距离和列表- 降格为明显的例子 ), 人们可以用一个显著的解析变码取代随机线性代码( RLC ) 。 具体地说, 随机性代码可以随机性地标出任何偏差值低的代码 。 粗的字母性要求可以被削弱到仅仅大的距离 。 此外, 大的距离甚至更远, 使得我们当前已知的低尾值 的 RLC LC 列表 的任意性 的解解变法性( ) 的任意性, 也能够使我们当前最易的 RLC 的 RLC 的 的 的 的 的 的 的 的 的 的 的 直序性 实现 的 。