This paper introduces a novel one-hop sub-query result cache for processing graph read transactions, gR-Txs, in a graph database system. The one-hop navigation is from a vertex using either its in-coming or out-going edges with selection predicates that filter edges and vertices. Its cache entry identifies a unique one-hop sub-query (key) and its result set consisting of immutable vertex ids (value). When processing a gR-Tx, the query processor identifies its sequence of individual one-hop sub-queries and looks up their results in the cache. A cache hit fetches less data from the storage manager and eliminates the requirement to process the one-hop sub-query. A cache miss populates the cache asynchronously and in a transactional manner, maintaining the separation of read and write paths of our transactional storage manager. A graph read and write transaction, gRW-Tx, identifies the impacted cache entries and either deletes or updates them. Our implementation of the cache is inside the graph query processing engine and transparent to a user application. We evaluate the cache using our eCommerce production workload and with rules that re-write graph queries to maximize the performance enhancements observed with the cache. Obtained results show the cache enhances 95th and 99th percentile of query response times by at least 2x and 1.63x, respectively. When combined with query re-writing, the enhancements are at least 2.33x and 4.48x, respectively. An interesting result is the significant performance enhancement observed by the indirect beneficiaries of the cache, gRW-Txs and gR-Txs that do not reference one-hop sub-queries. The cache frees system resources to expedite their processing significantly.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员